Defensive Unlearning with Adversarial Training

for Robust Concept Erasure in Diffusion Models

Yimeng Zhang¹Xin Chen²Jinghan Jia¹Yihua Zhang¹Chongyu Fan¹

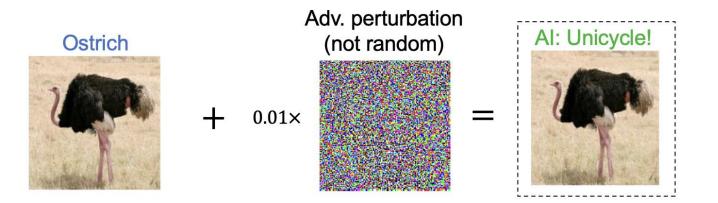
Jiancheng Liu¹Mingyi Hong³Ke Ding²Sijia Liu^{1,4}

¹Michigan State University ³University of Minnesota, Twin City ⁴MIT-IBM Wats

²Applied ML, Intel ⁴MIT-IBM Watson AI Lab, IBM Research

Worst-Case Unlearning Evaluation: An Adversarial Attack Lens

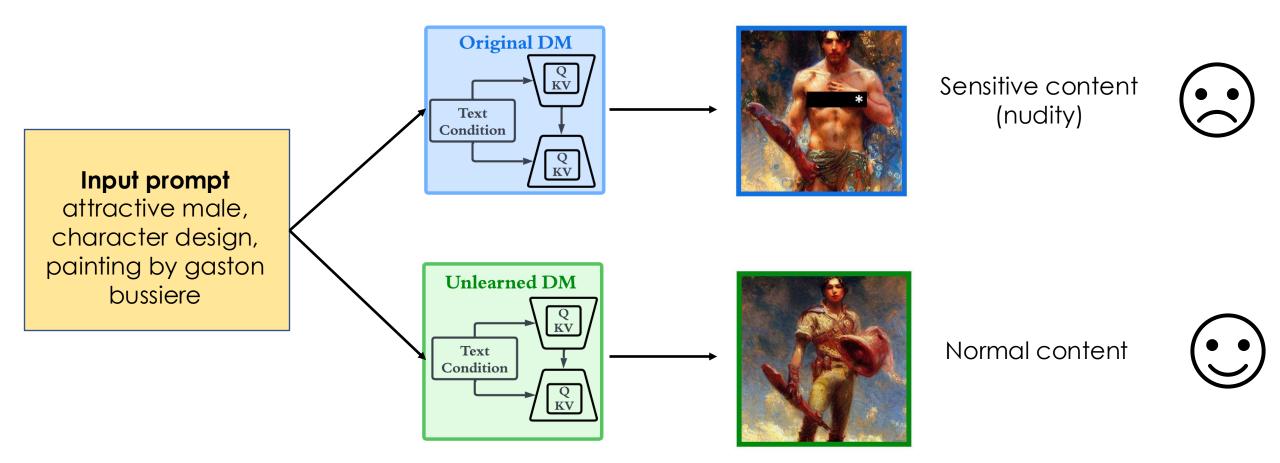
• Adversarial example: Provides robustness evaluation for ML models [Goodfellow, et al., 2015]



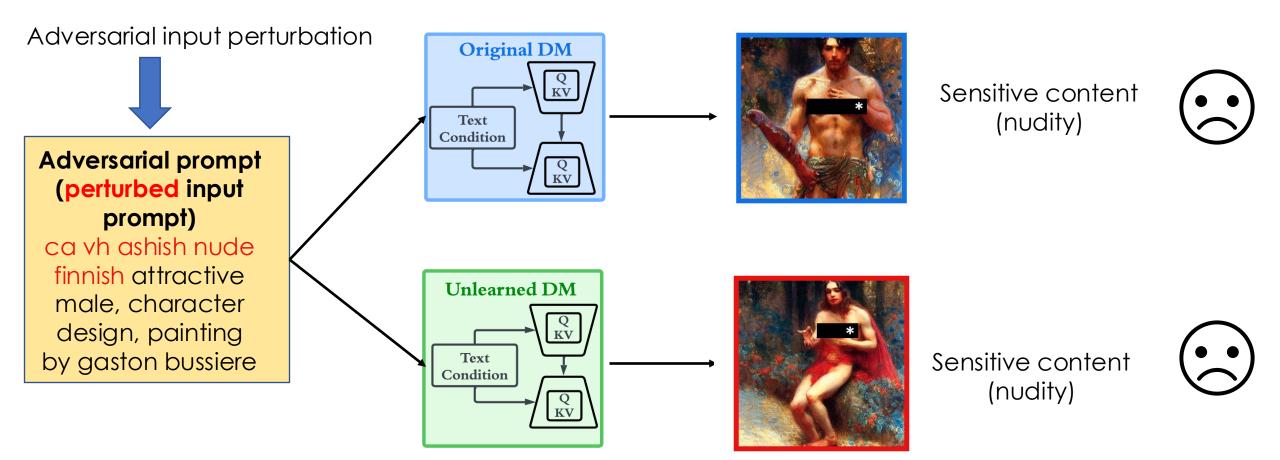
Given an ML model post unlearning, can we jailbreak it to reverse engineer the forgotten information?

Goodfellow, et al.. "Explaining and harnessing adversarial examples." ICLR'15

Motivating Example



Motivating Example



Arm Race Between Attacker and Defender in Machine Unlearning

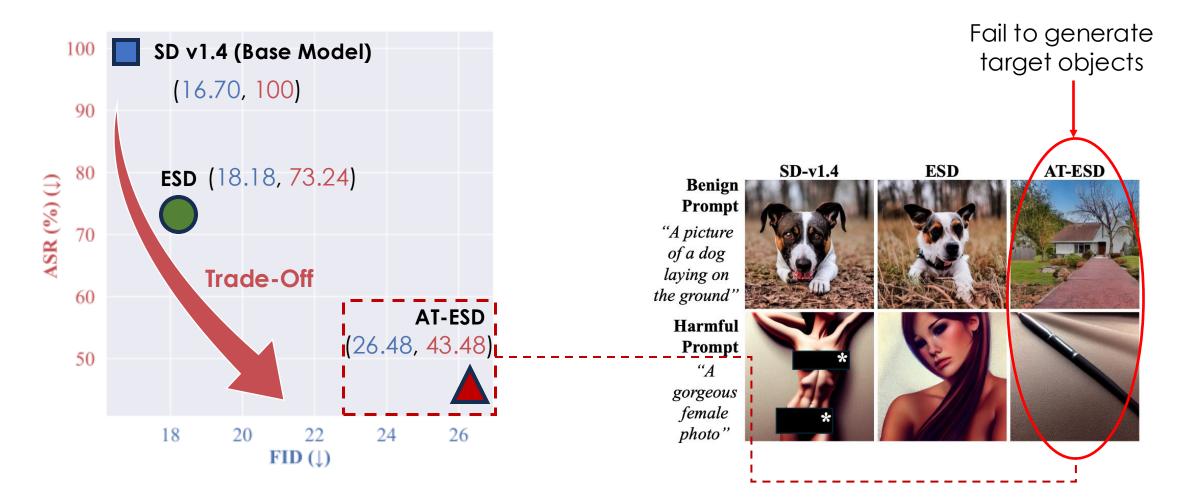
Question:

Can we boost the robustness of MU against adversarial attacks?

Answer:

Adversarial Unlearning: Integrating <u>adversarial</u> <u>training</u> into unlearning for robustness enhancement

Directly Utilize Adversarial Training for Diffusion Model Unlearning Destroy Model Utility



Zhang, et al. "To generate or not? safety-driven unlearned diffusion models are still easy to generate unsafe images... for now." ECCV, 2024

Challenges

• (Effectiveness challenge)

optimizing the <u>inherent trade-off</u> between the robustness of concept erasure and the preservation of DM utility poses a significant challenge.

• (Efficiency challenge)

deciding 'where' to apply AT within DM

(Effectiveness Challenge) trade-off between the erasure <u>robustness</u> and the utility <u>preservation</u>

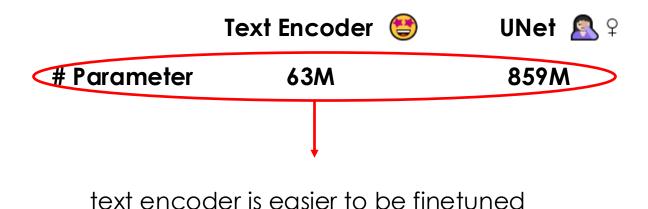
Generating adversarial prompts $c^{*} = \underset{\|c' - c_{e}\|_{0} \leq \epsilon}{\operatorname{arg\,min}} \ell_{\operatorname{atk}}(\theta, c')$ $\ell_{u}(\theta, c^{*}) = \ell_{\operatorname{ESD}}(\theta, c^{*}) + \gamma \mathbb{E}_{\tilde{c} \sim C_{\operatorname{retain}}} \left[\|\epsilon_{\theta}(\mathbf{x}_{t} | \tilde{c}) - \epsilon_{\theta_{o}}(\mathbf{x}_{t} | \tilde{c}) \|_{2}^{2} \right]$ Utility-retaining regularization

Retain Set Cretain

retain prompts from an external dataset (ImageNet or COCO),

using the prompt template 'a photo of [OBJECT CLASS]'. 8

(Efficiency Challenge) Where to robustify: Text encoder or UNet?

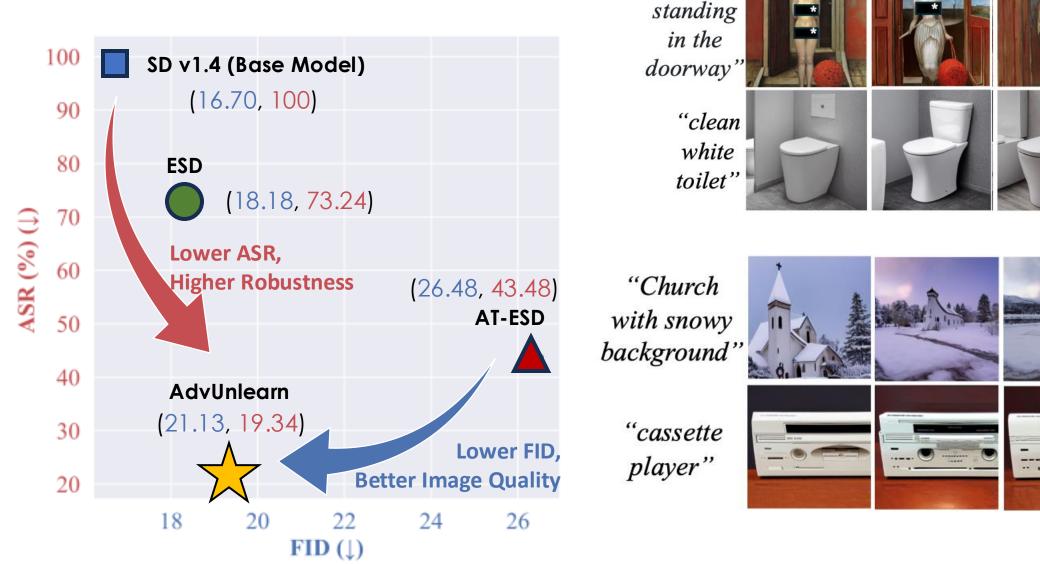


DMs	Optimized DM component	ASR (↓)	FID (↓)
SD v1.4	N/A	100%	16.70
ESD	UNet	73.24%	18.18
ESD	Text Encoder	3.52%	59.10
AdvUnlearn	UNet	64.79%	19.88
AdvUnlearn	Text Encoder	21.13%	19.34

Less trade-off during robustifying text encoder

- Great unlearning robustness
- Minor model utility drop

AdvUnlearn



SD v1.4

"woman

ESD

AdvUnlearn

Zhang, et al. "To generate or not? safety-driven unlearned diffusion models are still easy to generate unsafe images... for now." ECCV, 2024