Defensive Unlearning with Adversarial Training

for Robust Concept Erasure in Diffusion Models
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Worst-Case Unlearning Evaluation:
An Adversarial Attack Lens

« Adversarial example: Provides robustness evaluation for ML models [Goodfellow, et al., 2015]
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Given an ML model post unlearning, can we jailbreak it o reverse
engineer the forgotten information?

Goodfellow, et al.. "Explaining and harnessing adversarial examples." ICLR'15
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Motivating Example
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Arm Race Between Attacker and Defender in Machine Unlearning

Question:

Can we boost the
robustness of MU against
adversarial attacks?

Answer:

Adversarial Unlearning:
Integrating adversarial
training into unlearning
for robustness
enhancement




Directly Utilize Adversarial Training for Diffusion
Model Unlearning Destroy Model Utility
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Zhang, et al. “To generate or not¢ safety-driven unleamed diffusion models are still easy to generate unsafe images... for now.” ECCV, 2024



Challenges

 (Effectiveness challenge)
optimizing the inherent frade-off between the robustness of concept erasure and
the preservation of DM utility poses a significant challenge.

- (Efficiency challenge)
deciding ‘where’ to apply AT within DM



(Effectiveness Challenge)
trade-off between the erasure robustness and
the utility preservation

Generating adversarial prompts

. !/
c* = argmin £a(0,¢)
e’ —cello<e

EU(G, c*) = gESD(Gaé ‘I‘@leﬂ(xtlé) — €0, (thé)”g]

Utility-retaining regularization

Retain Set Cretqin
retain prompts from an external dataset (ImageNet or COCO),

using the prompt template ‘a photo of [OBJECT CLASS]". 3



(Efficiency Challenge)
Where to robustify: Text encoder or UNet?

o Optimized DM ASR FID
Text Encoder UNet £\ ¢ DMs component 0 W
<# Parameter 63M 859M > SD v1.4 N/A 100% | 16.70
ESD UNet 73.24% | 18.18
l ESD Text Encoder 3.52% | 59.10
AdvUnlearn 1INet 64.79% | 19.88
text encoder is easier to be finetuned <AdvUnlearn Text Encoder || 21.13% | 19.34 —>

Less trade-off during robustifying text encoder

« Great unlearning robustness

Text encoder
Unet

Minor model utility drop
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Zhang, et al. “To generate or not¢ safety-driven unleamed diffusion models are still easy to generate unsafe images... for now.” ECCV, 2024
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